

Efficient and sustainable container refrigeration applications using CO₂ J Michael Griffin, Carrier Transicold

TECHNOLOGY EVOLUTION

<u>Thomas Edison</u> and an electric car in 1913 (courtesy of the <u>National Museum of American</u> History)

"The electric car has long been recognized as 'ideal' because it was cleaner, quieter and much more economical than gasolinepowered cars." – The New York Times, Nov. 12, 1911

TECHNOLOGY EVOLUTION

Early CO₂ refrigeration compressor

2011 – CO₂ supermarket system

HISTORY OF CONTAINERIZATION

Pre-1950s

1956

2006 -

1968

CO₂e FROM SHIPPING

International shipping emissions total estimated 3% of global CO_2e . Reefer container estimated contribution is >10 million metric tons/yr

EFFICIENCY EVOLUTION

Energy efficiency improvement

(@ 38°C/100°F ambient)

Coefficient of Performance (COP) = net cooling / energy consumed

Progressive attention to environment and energy efficiency Efficiency gains in container refrigeration machinery since mid-1990s

CONTINUOUS IMPROVEMENT

Reduce GWP Direct Indirect

Consider total carbon footprint Production processes Materials

CONTAINER REFRIGERATION

Vapor compression cycle

Refrigerated shipping containers leverage a basic vapor compression cycle and components

NEW TECHNOLOGY

ALTERNATE REFRIGERANT

R744

GWP = 1, ODP = 0, Non-toxic Cost effective and available Protected against phase outs, taxes, and F-gas regulations Component suppliers optimizing designs for CO2

Applications demonstrating efficient systems

R744 operating envelope

Pressure level : 100 bar versus10 bar Trans-critical operation: when ambient >20°C

NEW TECHNOLOGY

Compressors

Variable speed Multi-stage Purpose-built

NEW TECHNOLOGY

Heat exchangers

Conventional flat coil

Optimized formed coil

Maximize heat transfer surface area to improve capacity and efficiency.

FIELD TRIALS

Strategic partnership

2008: sub-critical demonstration

2010: trans-critical demonstration

2011: expanding field trials; global service training

FIELD TRIALS

Trans-critical results

All ambients = **OK**

Maintain frozen & perishable set points up to $32^{\circ}C(90^{\circ}F) = OK$

Design life multiple voyages = **OK**

Carrier CO_2 compressor designed for container application = **OK**

ACTION PLAN

Service training

Product design introduction

Field trials

CONCLUSIONS

Environmental stewardship means OEMs must work to combine the best components in a carefully designed system.

Support 2020 / 2025 targets by product category

Support transport refrigeration in EU F-gas regulations

GWP = 1

Minimize environmental impact Improve energy efficiency