Modeling the Greenhouse Gas Emissions Impacts of Refrigeration Systems

A. S. (Ed) Cheng Associate Professor, Mechanical Engineering San Francisco State University

SFSU School of Engineering

 San Francisco State University (SFSU) Industrial Assessment Center (IAC):

provides energy-efficiency audits for small- to medium-sized manufacturing facilities

- Education in HVAC engineering, building energy simulation
- Life cycle assessment (LCA) experience with bio-derived transportation fuels

California ARB Research Project

"Low-GWP Commercial Refrigeration Feasibility and Cost-Benefit Engineering Evaluation"

- Objective: determine the feasibility, cost, and greenhouse gas (GHG) reduction benefits of using low-global warming potential (GWP) refrigeration systems in supermarkets and grocery stores
- Subcontractors:

• Project scheduled to begin in August 2014

Greenhouse Gas (GHG) Emissions from Refrigeration Systems

 <u>Direct</u> release of refrigerants into the atmosphere

Source: Fluke Corporation

 <u>Indirect</u> emissions associated with energy consumption

TEWI vs. LCCP

<u>Total Equivalent</u> <u>Warming Impact</u>

Considers direct and indirect GHG emissions that occur:

- while refrigeration system is in use
- during recovery/recycling of refrigerant (at system end-of-life)

Life Cycle Climate Performance

TEWI, *plus* direct and indirect GHG emissions from:

- Refrigerant production and distribution
- Component/system manufacturing, distribution, and recovery/recycling

Total Equivalent Warming Impact

Life Cycle Climate Performance

Modeling Challenges

- Must be predictive i.e., cannot rely on in-use data for electricity consumption, leak repair, refrigerant recharge, etc.
- Should be capable of modeling advancedtechnology systems and alternative refrigerants
- Must address impacts of varying (local) climates on refrigeration system operation
- Requires accurate input data or calculation methodology for refrigerant leak rates

Existing Modeling Tools: IPU Pack Calculation Pro

TEWI only; evaluates costs as well

III Pack Calculation Pro				
File Options Help				
1. Setup systems 2. Calculate 3. Economy 4. Report				
Add system Copy system Delete system Rename system				
System 1 (reference)				
System configuration Suction side Discharge side				
Reference system	System 1, MT Refrigerant: R744			
One stage Two one stage Cascade Two stage Heat pump MT Options	Select compressors from database			
Two stage transcritical Flooded evaporators				
Two stage open intercooler	Compressors:			
Two stage liquid injection	⊖ ⊕ Bitzer 4FTC-20K			
	Bitzer 4FTC-20K			
	Pack capacity Oe/Oc: 169.3 kW / 272.6 kW			
	At Custom, MBP (Te/Pgc = -10.0 °C / 95.0 bar)			
	Sustem 1 T			
	Refrigerant: R744			
	Select compressors from database			
	Compressors:			
	⊖ (E) Bitzer 2EC-6.2K			
	⊖ ⓑ Bitzer 2EC-6.2K			
	Pack capacity Qe/Qc: 60.6 kW / 73.8 kW			
	At Custom, LBP (Te/Tc = -35.0 / -10.0 °C)			

Existing Modeling Tools: AHRTI'S LCCP Model

Spreadsheet based, LCCP; developed for residential heatpump systems

	А	B	C			
1	Calculation Settings					
2						
3	TMY3 Data Folder Path	C:\AHRTI LCCP HP\tmy3data				
4						
5						
6	Input Parameters					
7	Case Number	1				
8	Case Name System A					
9	Location SAN FRANCISCO, CA					
10	Refrigerant R410A					
11	HP Data Worksheet	HPData-SS-FF-EN				
12	Results Output Sheet	Results				
14						
15						
16						
17						
18	Summary Results					
19	Status	Success				
20	Total Lifetime Emission [kg CO2-Eq.]	51849				
21	Total Direct Emission [kg CO2-Eq.]	8524				
22	Emission - Ref. Leakage [kg CO2-Eq.]	7103				
23	Emission - Ref. Loss at EOL [kg CO2-Eq.]	1421				
24	Emission - Decomposition [kg CO2-Eq.]	0				
25	Total Indirect Emissions [kg CO2-Eq.]	43325				
26	Emissions - Energy Consumption [kg CO2-Eq.]	42785				
27	Emissions - Equipment Mfg[kg CO2-Eq.] 517					
28	Emissions - Equipment EOL [kg CO2-Eq.] 23					
29	TMY3 Location	SAN FRANCISCO INTL AP				

Existing Modeling Tools: LCCP (ORNL/UMCP)

For supermarket refrigeration and residential heat pumps; web-based tool available

Life Cycle Climate Performance - Supermarket Refrigeration							
LCCP INPUT PARAMET	rers	Syste ▼ Select Load Profile Load Prof	ile 1 ▼ Select City	San Francisco,	California [6]	RUN T	
SYSTEM INPUTS		.oad sample values			SYSTEM LO COMPONENTS AT REFRIGERATION SYST		
Refrigerant [-]	R404A	Subcooling at Expansion Device [F]	50.4	CONDENSER	WMT COMP	CONDENSER	
System Charge [lb]	4409.25	Superheat at Evaporator Outlet [F]	65.0	RECEIVER COM	P. 0	COMP.	
Annual Leak Rate [%]	5	System Lifetime [yrs]	15		MECHANICAL	Quecco	
Refrigerant Loss-EOL [%]	15	Cut-off Temperature [F]	55.0	1	SUBCOOLER	1	
Service Leakage Rate [%]	0.05	Service Interval [year]	5	(O)	• •	D D	
	-	Load HTC values		QSUP UNE	Quetune	Gar UNE GAR UNE	
Suction Line HX Efficiency	[%] 50.0	Suction Line Temperature Increa	se [F] 50.0	I O	NTS IN DISPLAY-CASE	OR UNIT-COOLER	
Nominal Load [Btu/hr]	300000.	0 Liquid Line Temperature Decreas	se [F] 13.5	EXPANSION DEVICE		SLHE QONESHE	
COMPRESSOR				EVAPORATOR		EVAPORATOR	
Isentropic Efficiency [%]	65	RPM [-]	3600	COIL	Q		
Volumetric Efficiency [%]	80	Displacement [in ³]	7.75	QAELODOS SAECOZ		QUINCHOS	
Number of compressors [-] 10						

Existing Modeling Tools: GREEN-MAC-LCCP

Spreadsheet-based tool for *mobile* air conditioning systems; well established and peer reviewed

	A	В	С	D
1				
2	Baseline-R-134a	United States	United States	United States
3	REFRIGERANT LEAKAGES & SERVICE	Phoenix	Houston	Boston
4	(function of climate)			
5	Avg. Annual Temp (6AM-24PM)	24.3	21.1	11.0
6	Lifetime [yrs]	9	9	9
7	Refrigerant Charge [g]	550	550	550
8	Estimated loss before Service is required	200	200	200
9				
10	REGULAR and IRREGULAR			
11	Regular Leakage [g/y]	13.4	11.0	5.7
12	Irregular (Accidental) Leakage [g/y]	17	17	17
13	SERVICE			
14	Calculated Number of Services	1.4	1.3	1.0
15	Year of Recharge	6.6	7.2	8.8
16	Actual Number of Services	1	1	1
17	Leaks from Professional Service			
18	Loss in each service [g]	35	35	35
19	Loss from Can Heels per service [g]	5	5	5
20	Service loss[g/lifetime]*	40	40	40
21	Leaks from DIYers Service			
22	Loss in each service [g]	52	52	52
23	Loss from Can Heels per service [g]	108	108	108
24	Service loss[g/lifetime]*	160	160	160
25	% DIYes	25%	25%	25%
26	Weighted Leaks due to Service	70	70	70
27	END-OF-LIFE			
28	EOL with refrigerant capture[g/lifetime]	48	50	55
29	EOL without refrigerant capture[g/lifetime]	476	498	545
30	Vehicles in Collision	005	0.10	0.10
31	Weighted EOL Leaks	305	319	349
32	Assembly Plants (fixed loss) [g/lifetime]	3.5	3.5	3.5
33	TOTAL LEAKAGE LOSS	050		007
34	I otal Retrigerant Loss	652	644	627
35	Lifetime Refrigerant Charge	1202	1194	1177
36	Lifetime NEW Refrigerant	754	754	754

Modeling Tool Comparison and Development

International Institute of Refrigeration (IIR) Working Party on LCCP Evaluation has been established to assess different methods and to develop and promote a recommended methodology

Representative Model Results: LCCP (ORNL/UMCP)

Thank you!

A. S. (Ed) Cheng, Ph.D., P.E. Associate Professor Mechanical Engineering 1600 Holloway Ave, SCI 123 San Francisco, CA 94132 415 / 405-3486 ascheng@sfsu.edu

