Industry co-operation on Natural Refrigerant technology development

2014.02.04

Kenji Matsuda

Copyright 2014 JRAIA

About JRAIA

History

The Japan Refrigeration and Air Conditioning Industry Association (JRAIA) was originally established in February 1949.

Objective

JRAIA contributes to the steady development of Japanese industry and improvement in people's standard of living.

Membership

JRAIA members consist of regular and associate members. (123)(1) Regular members: 76(2) Associate members: 47

Worldwide Heat Pump Market

Estimates of World Demand for Air Conditioners

89.5 million units (2012 calendar year)

Japanese share of Heat Pump Market in the world

The effect of the Top Runner Program

JRAIA

Agency for Natural Resources and Energy

Domestic and Overseas Situation of Refrigerants and Future View

- •EU passed a resolution to ban refrigerants with GWP150 and above for automobile air-conditioners from 2011 onward.
- Phase-out of HFC is put on a discussion table due to global warming impact caused by HFC.
- Japanese Government will frame a new system of the GWP reduction.
- •ASHRAE has created a new grade A2L for moderate flammable refrigerants in its classification. There is a movement worldwide toward moderate flammable refrigerants with a low GWP.

Policy and Activities for Environmental Issues

EQUIPMENT

Energy Saving

•Emission control on a CO2 basis

REFRIGERANTS Direct Emission control

- Recovery activities
- Emission control in production
- Leakage reduction in use

ALTERNATE REFRIGERANTS

Switch to new refrigerants

- Research and investigation
- Low GWP refrigerants
- · Other refrigerants

Fluorocarbon Recovery and Destruction Law ⇒New Law (2015)

Energy conservation law Top Runner Program

JRAIA

Home Appliances Recycling Law

Automobile Recycling Law

The Act for Rationalized Use and Proper Management of Fluorocarbons.

Requirements for next generation refrigerants

Conditions required for Alternatives

*

Safety	 Low Toxicity Low Risk of Flammability
Environment Performance	 Ozone Depletion Potential =0 Low Global Warming Potential
Energy Efficient	 Superior for LCCP* value Similar performance at high load cooling
Economic Feasibility	 Reasonable Cost Acceptable in Developing Countries

CO₂ Emission origin from energy in product usage CO₂ Emission at refrigerant Leaks in product usage CO₂ Emission at refrigerant Leaks at product disposal

Next generation refrigerant candidates for air-conditioners

	ODP	GWP (IPCC 4AR)	ASHRAE safety classification	Ignition Point (°C)	Burning Quantity (kJ/kg)	Burning Velocity (cm/sec)	Pressure (MPa)
HCFC R22	0.055	1810	A1	-	-	-	1.72
R410A	0	2090	A1	-	-	-	2.72
R32	0	675	A2L	648	9.3	6.7	2.8
R1234yf	0	4	A2L	405	10.3	1.5	1.16
Mix	0	300~500 ?	? Sovore	?	?	?	
New	0	?	?		?		<u></u>
R717 (NH ₃)	0	0	B2L	651	18.6	7.2	1.78
R290 (Propane)	0	<3	A3	410	46.3	39	1.53
R744 (CO ₂)	0	1	-	-	-	-	10.00

Combustion Test Results

R290(A3) Propane

BV=39cm/s

R152a (A2) BV=23cm/s

R32 (A2L) BV=6.7cm/s

Trends in the number of Natural Refrigerant Patent

Example of Alternative Refrigerant Technology

MAYEKAWA Air Refrigeration System ultra-low temperature (-50°C-100°C)

Issues of Natural Refrigerant

- Safety (Flammability ,Toxic)
- Performance (Low energy efficiency)
- Economy (production cost)

There is no suitable natural refrigerant in Air-conditioner use

Panasonic CO2 Refrigeration Showcase

W	-		*	١
F		_	_	ł
THE				
		-		P
-	-			

TOYO Engineering Works CO2/NH³ Secondary Refrigerant Circulation System

Correlation diagram of ambient temperature and operating temperature on CO₂ refrigerant

Thank you for your kind attention!

