

Costs involved in HC conversions Experiences from production & commercialization

- For climate-friendly cooling -

Presented at ATMOsphere 2010 Brussels, 27 September 2010 by: **Dr. Volkmar Hasse**

commissioned by

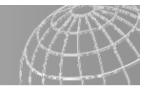
Federal Ministry for Economic Cooperation and Development

Contents

- Objective
- General approach
- Description of projects
- Summary of cost implications
- Emissions reduction potential
- Cost effectiveness

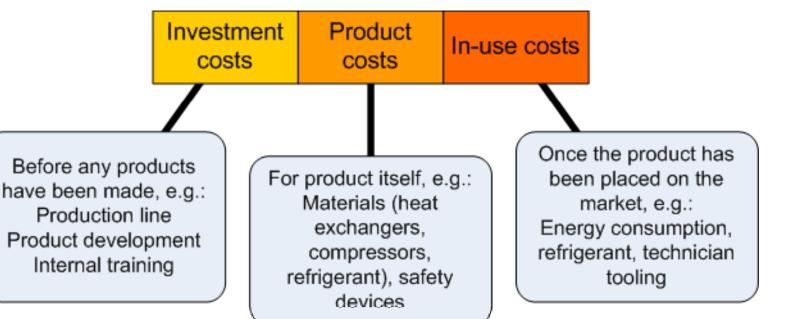
Objective

Reliable cost information on


- Cost of conversion to HC refrigerants
- CO2-eq cost-effectiveness

Information was gathered by

- Analysing costs of demonstration projects already carried out
- Discussions with other manufacturers



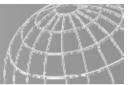
Overview of Cost Implications

Costs associated with change of refrigerant change comprise three aspects

Here, we neglect in-use for simplicity (< 1%)

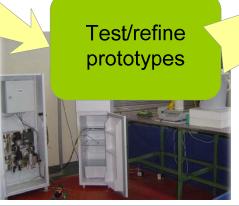
Product Types

Concerned with two different types of product



Stand-alone commercial refrigeration

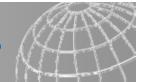
Implementing Projects


Design production

layout

In-house and technician training

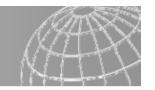
Begin production



Partner for the Future. UNEP estimates for conversion projects Worldwide.

In "Revised analysis of relevant cost considerations surrounding the financing of HCFC phase-out" (UNEP/OzL.Pro/ExCom/55/47)

Incremental capital cost (ICC) of converting manufacturing


 technology transfer, charging equipment, gas detection and ventilation, training and safety inspection, etc

Incremental operational costs (IOC) associated with funding the new alternative

compressors, heat exchangers, safety features, etc

Summary of UNEP cost implications

Room air conditioners (AC) based on 250,000 units per year

	R410A	R290
ICC	\$1 - \$4 per unit	\$2 - \$3 per unit
IOC	\$11 - \$33 per unit	\$18 per unit

Stand-alone commercial refrigeration (SACR) based on 10,000 units per year

	R410A	R290	
ICC	\$7 per unit	\$32 - \$80 per unit	
IOC	\$14 per unit	\$15 - \$23 per unit	

Investment Costs

Product development/R&D

Highly variable:
 around <½% to >5% of one-years' product turnover

In-house training, internal infrastructure and admin

- Approx. \$50,000 - \$150,000

Production line equipment

- SACR: approx. (\$150,000) + \$100,000 extra for HC

- AC: approx. (\$200,000) + \$150-200,000 extra for HC

Production area safety systems

SACR: approx. \$90,000 - \$130,000

- AC: approx. \$150,000 - \$200,000

Investment Costs

Average investment costs per unit

Cost element	AC	SACR
Product development	\$8	\$3
In-house training	<\$1	<\$1
Internal infrastructure/admin	\$1	\$1
Production line equipment	\$2	\$3
Production area safety systems	\$2	\$3
Total	\$13	\$11
Over 10 years	\$1.3	\$1.1

Product costs (from manufacturers)

For room air conditioners

	R22 → R290	R22 → R410A	R410A → R290
HX costs	-\$15/unit	-\$2/unit	-\$13/unit
Refrigerant	+\$1/unit	+\$18/unit	-\$17/unit
Compressor	+\$2 to +\$28/unit	+\$10 to +\$28/unit	-\$8 to \$0/unit
Safety items	+\$5/unit	n/a	\$5/unit
Overall	+\$4/unit (average)	+\$35/unit (average)	-\$29/unit (average)

More in-depth R&D will yield lower costs for new systems, e.g. through

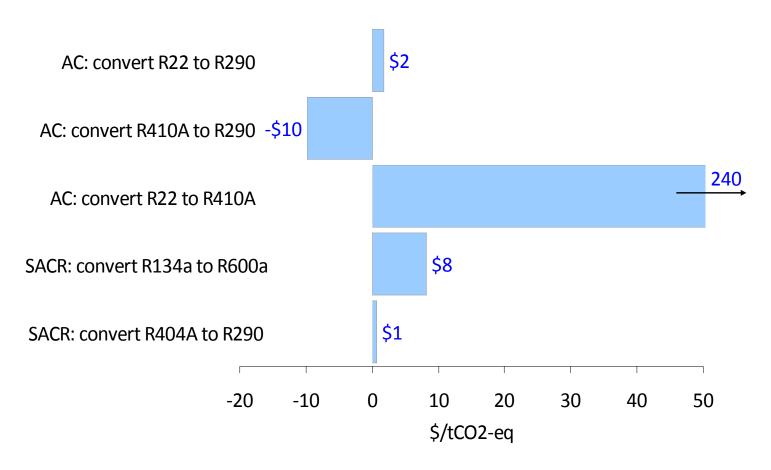
 Smaller heat exchangers (HX), cheaper safety features, lower charge size, etc

Product costs (from manufacturers)

For stand alone commercial refrigeration

	R134a → R290	R404A → R290	
HX costs	+\$1/unit	-\$1/unit	
Refrigerant	-\$1/unit	-\$4/unit	
Compressor	\$0 to +\$2/unit	\$0 to +\$2/unit	
Safety items	+\$5/unit	+\$5/unit	
Overall	+\$6/unit	+\$1/unit	

However, opportunity to redesign products yielded massive cost savings:


10% to 40% lower product cost

Cost Effectiveness

For commercial refrigeration, the "practical" value is much better (around -\$50/tCO2-eq) due to reduced product cost

Conclusion

- UNEP values seem to overestimate cost requirements (for product construction)
- Shifting to HC provides excellent cost-effective emissions reduction
- Greater R&D expenditure greatly improves cost effectiveness in long term
- For some manufacturers, investment in conversion can yield massive benefits
 - through improved production and product design
 - (But this applies regardless of refrigerant type)

Environmental Benefits

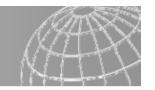
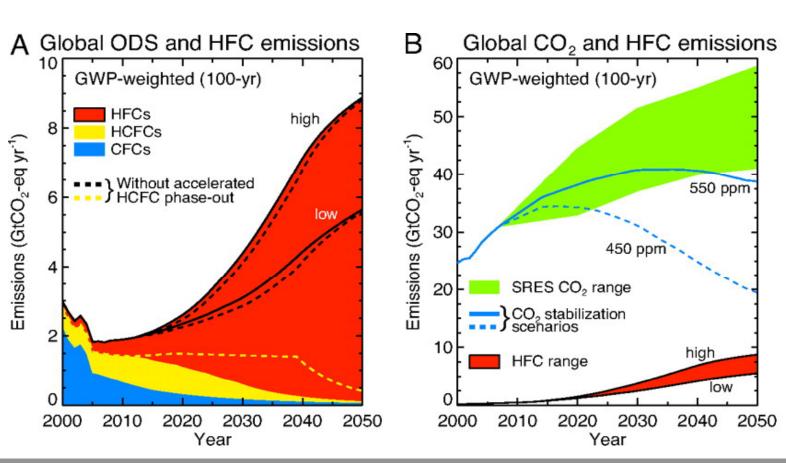
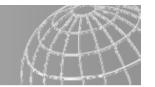



Fig2: HFC share of global GHG-emissions


(compare HFC high vs. 450 ppm stabilization szenario -> blue dotted line)

Source: Velders, Guus J.M. et.al., 2009

Partner for the Future. Worldwide. Estimated Greenhouse Gas Emissions

Air conditioners

	R22	R410A	R290
Charge (kg)	1.1	0.9	0.3
GWP	1810	2100	3
Leak rate/year	5%	5%	5%
Disposal release	95%	95%	95%
Unit lifetime (years)	10	10	10
Lifetime tCO2-eq/unit	2.9	2.7	0.001

For a production line with a capacity of 180,000 units per year:

525,000 tCO2-eq per year

Partner for the Future. **Estimated Greenhouse Gas Emissions**

Stand alone commercial refrigeration

	R134a	R600a	R404A	R290
Charge (kg)	0.35	0.15	0.5	0.2
GWP	1410	3	3800	3
Leak rate/year	5%	5%	5%	5%
Disposal release	100%	100%	100%	100%
Unit lifetime (years)	15	15	15	15
Lifetime tCO2-eq/unit	0.9	0.001	3.3	0.001

For the conversion of production capacity of 100,000 units per year:

150,000 tCO2-eq per year

How to Remove Barriers

Advantage of HC equipment manufacture:

Considerable economic benefits associated with the conversion of refrigeration equipment production to HC

Barrier encountered here:

Safety risk is perceived as unacceptable

This preconception is reinforced by industry interests associated with synthetic fluorinated refrigerants

Approach to remove this particular barrier:

Accumulate and publicize economic evidence to show advantages of the production of HC equipment

Accumulate and publicize actual evidence plus risk analysis information to show the technical nature of safety issues and their available solutions.

Contact Information

Additional Information:

One of our PROKLIMA demonstration projects with **GREE Electrical Appliances Inc. of Zhu Hai, China** is getting ready to produce state of the art R290 split air conditioners.

Should you wish to introduce HFC-free air conditioning, kindly write to

<u>Linda.Ederberg@proklima.net</u>

We are ready to assist you.

volkmar.hasse@gtz.de

Thank you for your support in the complex and challenging task to cool ourselves without destroying our children's future.

Thank You!

volkmar.hasse@gtz.de